找回密码
 立即注册
搜索
查看: 1913|回复: 13

没有人讲控制器芯片介绍以及发展史吗?(转载)

[复制链接]

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 10:46:01 | 显示全部楼层 |阅读模式
本帖最后由 新的理念 于 2016-12-13 11:47 编辑

最好图文并茂。

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 10:49:49 | 显示全部楼层
小功率低成本的无刷直流电动机控制器研制
摘 要:针对电动助力车与压缩机电机的特点,对其驱动控制进行了研究,提出了一种高效低价的小型控制器的设计。主要介绍以专用控制芯片MCC33035、MC33039、IR2130为核心构成的永磁无刷直流电动机控制器结构,主要涉及核心控制电路的构成、功率开关元件的驱动以及必要的保护措施。
1    永磁无刷直流电动机是近年随着电力电子器件及新型永磁材料发展而迅速成熟起来的一种新型机电一体化电机,既具有交流电机的结构简单、运行可靠、维护方便等优 点,又具备直流电机那样固有的优越的起动性能和调速特性,而无机械式换向机构,现以广泛应用于各种调速驱动场合,其应用前景看好,尤其从当今的环保、能 源、效率等综合因素出发,水磁无刷直流电机可望在未来的电动车及冰箱或空调类永磁压缩机领域占有主导地位。
永磁无刷直流电动机控制器结构已有多种形式,有最初复杂的模拟式到近来以单片机为核心的数字式,但新型电机控制专用芯片的出现,给无刷直流电机调速装置设计 带来了极大的便利,这种集成模拟控制芯片控制功能强、保护功能完善、工作性能稳定,组成的系统所需外围电路简单、抗干扰能力强、特别适用于对控制器体积、 价格性能比要求较高的场合。
2 无刷直流电机的驱动控制电路
无刷直流电动机功率开关电路一般采用桥式或非桥式驱动,由于三相星形桥式驱动方式,其绕组利用率较高、力矩波动小,因而被大量采纳。图1 是其工作原理图,对压缩机类负载,其输入可采用220V/50HZ市电输入、二极管单相全桥整流、电容滤波后得到;而对电动车其直流电源一般均为蓄电池。 图中主回路功率器件选用POWER-MOSFET,驱动电路采用IR公司生产的六输出高压MOS栅极驱动器IR2130。

MC33035是MOTOROLA公司研制的第二代无刷直流电机控制专用集成电路,加上一片MC33039电子测速器将转子位置信号进行F/V转换,形成转速反馈信号,即可构成转速闭环调节系统。MC33035包括—个转子定位译码器可用于确定适当换向顺序,它监控着3 个霍尔效应开关传感器输入 (4、5、6脚),以保证顶部和底部驱动输出的正确顺序;一个以向传感器供电能力为基准的温度补偿器;一个可以程序控制频率的锯齿波发生器;一个全通误差 放大器,能够促进闭环电机速度实现控制,若作为开环速度控制,则可将这误差放大器连成为单一增益电压跟随器;一个脉冲宽度调制比较器,3个集电极开路顶部 驱动输出(1,2,24脚),以及三个适用于驱动功率MOSFET的理想的大电流推挽式底部驱动输出 (19,20,21脚);MC33035还具有几种保护特性,欠压锁定,由可选时间延迟限制的循环电流锁定停车方式,内部过热停车,以及一个很容易与微处 理器相连的故障输出。这两种集成芯片可以方便地完成无刷直流电动机的正反转、运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环 控制等。此外,MC33035还有一个60度/120度选择管脚,它可以确定转子定位译码器是60。或是120。传感器电相位输入。该控制器电路结构,如图2所示。

图2中,J1控制电机转向,J2控制起停,月选择速度开环或闭环运行,J4控制电机制动,J5选择转子位置检测信号为60度或120度方式,J6控制系统的复位。电位器用以设定所需电机转速,LED用作故障指示,当出现无效的传感器输入码、过流、欠压、芯片内部过热、使能端为低电平时,LED发光报警,同时自动封锁系统,只有故障排除后,经系统复位才能恢复正常工作。
该控制器工作过程为:从电机转子位置检测器PS送来的三相位置检测信号(SA、SB、SC)一方面送入MC33035,经芯片内部译码电路结合正反转控制端、起停控制端、制动控制端、电流检测端等控制逻辑信号状态,经过运算后,产生逆变器三相上、下桥臂开关器件的六路原始控制信号,其中,三相下桥开关信号 还要按无刷直流电机调速机理进行脉宽调制处理。处理后的三相下桥PWM控制信号(AB、BB、CB)及三相上桥控制信号(AT、BT、CT)经过驱动放大 后,施加到逆变器的六个开关管上,使其产生出供电机正常运行所需的三相方波交流电流。另一方面,转子位置检测信号还送入MC33039,经F/V转换,得 到一个频率与电机转速成正比的脉冲信号FOUT,其通过简单的阻容网络滤波后形成转速反馈信号,利用MC33035中的误差放大器即可构成一个简单的P调节器,实现电机转速的闭环控制。实际应用中,还可用外接各种PI、PID调节电路实现复杂的闭环调节控制。
3 IR2130驱动电路分析
按MC33035 的原有设计,其输出的下桥三路驱动信号可直接驱动N沟通功率MOSFET,上桥三路驱动信号可直接驱动P沟通功率MOSFET。现考虑到逆变桥上桥臂也采用三个N沟通MOSFET,这样,各相上桥臂的驱动信号都将有各自不同的地位;另一考虑就是在需要较大驱动信号及较大偏置电压下直接使用,而 MC33035上桥臂仅具有50mA吸入电流及最小30V击穿电压能力,在较高电压场合下,如AC220V经单相桥整流的给定电压就需转换。
IR2130 是美国IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,驱动信号延时为阳级,开关频率在20kHz以上,其主要特点和性能为:集成度高,六路驱动,所需外围元件少;偏置电压最大600V,驱动电流200Ma/420mA,栅压范围10~20V,开关时间120ns/94ns(典型值),死区 时间2.5μs(典 型值);具有过流关断、欠压封锁功能;单电源工作,六路驱动仅用一个+15V~20V直流电压电源,IR2130内部应用自举技术来实现同一集成电路可同时输出两个驱动逆变桥中高压侧与低压侧的通道信号,它的内部为自学操作设计了悬浮电源;悬浮电源保证了IR2130直接可用于母线电压为—4~+500V的系统中来驱动功率MOSFET或IGBT,其中3个上半桥臂功率管驱动利用自举电容电压供电,3个下半桥臂功率管与芯片共用一个电源。IR2130外部电路,如图3所示。

图中,C1、C2、C3为逆变器上桥臂产生隔离电源的自举电容,其值的大小与功率开关的栅极驱动要求和功率开关的最大“开通”时间有关;R3—R6、RS为过流检测电阻,只要改变R4的大小,就可调节电流保护值的大小;R10—R15为栅极电阻,R7—R9 为上三臂的栅源电阻;其中引脚2、3、4为驱动逆变器中三个高压侧功率管的对应信号输入端,引脚5、6、7为驱动逆变器中三个低压侧功率管对应信号输入 端,分别接至MC33035对应输出端;而对应的六路驱动器输出端已连至相应高、低压侧的六个N沟道功率MOSFET;芯片中ITRP是过流保护的逻辑输入信号,该信号取自功率主电路中的电流检测器,它与一个0.5v的比较电平比较,再与欠压等信号相或,可以阻止信号发生器产生六个输出,同时送出一故障信 号FAULT给外部电路,该端提供一个过电流、直通或过电压、欠电压保护的指示信号,应用中,接指示用发光二极管或用户系统封锁端。
其工作原理为:从MC33035脉冲形成部分(或PWM波形发生器)来的三相六路输出脉冲信号,经内部三个输入信号处理器,按真值表处理之后,变为六路输出 脉冲,其对应的驱动三路低压侧功率管信号,经三路输出驱动器功率放大后,直接送往被驱动MOSFET的栅源极。而另外三路高压侧驱动信号H1、H2、H3 先经片内三个脉冲处理和电平移位器中的自举电路进行电位转换,变为三路电位悬浮的驱动脉冲,再经对应的三路输出锁存器锁存,并经严格的驱动脉冲欠电压与否 检验之后,送到输出驱动器进行功率放大,最后才加到高压侧的MOSFET的栅源极。一旦外电路发生过电流或直通、IR2130的工作电源欠电压、某路自举 电源工作电压不足、脉冲形成环节发生故障时,一则封锁驱动信号,另一方面,经FAULT端输出一故障信号。
附加上一个电路图(不用IR2130):

4 结束语
文中介绍的利用专用集成芯片构成的无刷直流电机控制系统,具有集成度高、速度快及完善的保护功能等特点。尤其是采用单一电源驱动的具有六路输出功能的IR2130 集成快,大大简化了驱动电路结构,因而整个线路外围元件少、走线简单,可大大减小逆变器体积,提高可靠性,必将成为新一代变频器驱动电路。该电路己成功地 用于无刷直流电动机的控制装置中,实践证明:它是理想的无刷直流电机专用逆变调速器,具有成本低、结构简单、工作可靠的特点。

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 11:04:19 | 显示全部楼层
好资料     

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 14:30:36 | 显示全部楼层
直流无刷电机原理详解 2014年08月07日       摘要:本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。 顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点。       1.简介       本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。 顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如:        ·能获得更好的扭矩转速特性;        ·高速动态响应;        ·高效率;        ·长寿命;        ·低噪声;        ·高转速。        另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 在这篇应用笔记中将会对BLDC的结构、基本原理、特性和应用做一系列的探讨。探讨过程中可能用到的术语可以在附录B“术语表”中找到相应的解释。   2. BLDC结构和基本工作原理        BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和       3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为广泛的3相BLDC。      2.1 定子        BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见下图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。   图2.1.1. BLDC内部结构       BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如下图。         另外还需要对反电动势的一点说明就是绕组的不同其相电流也是呈现梯形和正弦波形,可想而知正弦绕组由于波形平滑所以运行起来相对梯形绕组来说就更平稳一些。但是,正弦型绕组由于有更多绕组使得其在铜线的使用上就相对梯形绕组要多。       平时由于应用电压的不同,我们可以根据需要选择不同电压范围的无刷电机。48V及其以下应用电压的电机可以用在汽车、机器人、小型机械臂等方面。100V及其以上电压范围的电机可以用在专用器具、自动控制以及工业生产领域。   2.2 转子       定子是2至8对永磁体按照N极和S极交替排列在转子周围构成的(内转子型),如果是外转子型BLDC那么就是贴在转子内壁咯。如图2.2.1所示;   图2.2.1 转子磁极排布       2.3 霍尔传感器        与有刷直流电机不同,无刷直流电机使用电子方式换向。要使BLDC转起来,必须要按照一定的顺序给定子通电,那么我们就需要知道转子的位置以便按照通电次序给相应的定子线圈通电。定子的位置是由嵌入到定子的霍尔传感器感知的。通常会安排3个霍尔传感器在转子的旋转路径周围。无论何时,只要转子的磁极掠过霍尔元件时,根据转子当前磁极的极性霍尔元件会输出对应的高或低电平,这样只要根据3个霍尔元件产生的电平的时序就可以判断当前转子的位置,并相应的对定子绕组进行通电。        霍尔效应:当通电导体处于磁场中,由于磁场的作用力使得导体内的电荷会向导体的一侧聚集,当薄平板通电导体处于磁场中时这种效应更为明显,这样一侧聚集了电荷的导体会抵消磁场的这种影响,由于电荷在导体一侧的聚集,从而使得导体两侧产生电压,这种现象就称为霍尔效应,E.H霍尔在1879年发现了这一现象,故以此命名。   图2.3.1 霍尔传感器测量原理       图 2.3.1显示了NS磁极交替排列的转子的横截面。霍尔元件安放在电机的固定位置,将霍尔元件安放到电机的定子是比较复杂的,因为如果安放时位置没有和转子的磁场相切那么就可能导致霍尔元件的测量值不能准确的反应转子当前的位置,鉴于以上原因,为了简化霍尔元件的安装,通常在电机的转子上安装一颗冗余的磁体,这个磁体专门用来感应霍尔元件,这样就能起到和转子磁体感应的相同效果,霍尔元件一般按照圆周安放在印刷电路板上并配备了调节盖,这样用户就可以根据磁场的方向非常方便的调节霍尔元件的位置以便使它工作在最佳状态。        霍尔元件位置的安排上,有60°夹角和120°夹角两种。基于这种摆放形式,BLDC的电流换向顺序由制造厂商制定,当我们控制电机的时候就需要用到这种换向顺序。       注意:霍尔元件的电压范围从4V到24V不等,电流范围从5mA到15mA不等,所以在考虑控制器时要考虑到霍尔元件的电流和电压要求。另外,霍尔元件输出集电极开路,使用时需要接上拉电阻。 2.4 操作原理        每一次换向都会有一组绕组处于正向通电;第二组反相通电;第三组不通电。转子永磁体的磁场和定子钢片产生的磁场相互作用就产生了转矩,理论上,当这两个磁场夹角为90°时会产生最大的转矩,当这两个磁场重合时转矩变为0,为了使转子不停的转动,那么就需要按顺序改变定子的磁场,就像转子的磁场一直在追赶定子的磁场一样。典型的“六步电流换向”顺序图展示了定子内绕组的通电次序。   2.5 转矩/转速特性       图 2.5.1  转矩和速度特性显示了转矩和转速特性。BLDC一共有两种转矩度量:最大转矩和额定转矩。当电机连续运转的时候表现出来的就是额定转矩。在无刷电机达到额定转速之前,转矩不变,无刷电机最高转速可以达到额定转速的150%,但是超速时电机的转矩会相应下降。        在实际的应用中,我们常常会让带负载的电机启动、停转和逆向运行,此时就需要比额定转矩更大的转矩。特别是当转子静止和反方向加速时启动电机,这个时候就需要更大的转矩来抵消负载和转子自身的惯性,这个时候就需要提供最大的转矩一直到电机进入正向转矩曲线阶段。   图2.5.1 转矩和速度特性       3. 换向时序       图2.6.1显示了霍尔元件的输出、反电动势和相电流的关系。图2.6.2显示了根据霍尔元件输出的波形应该绕组通电的时序。       图2.6.1中的通电序号对应的就是图2.6.2中的序号,每隔60°夹角其中一个霍尔元件就会改变一次其输出特性,那么一圈(通电周期)下来就会有6次变化,同时相电流也会每60°改变一次。但是,每完成一个通电周期并不会使转子转动一周,转子转动一周需要的通电周期数目和转子上的磁极的对数相关,转子有多少对磁极那么就需要多少个通电周期。       图2.6.3是关于使用MCU控制无刷电机的原理图,其中微控制器PIC18FXX31控制Q0-Q5组成的驱动电路按照一定的时序为BLDC通电,根据电机电压和电流的不同可以选择不同的驱动电路,如MOSFET、IGBT或者直接使用双极性三极管。       表2.6.1和表2.6.2表示的是基于霍尔输入时在A、B、C绕组上的通电时序。表2.6.1是转子顺时针转动的时序,表2.6.2是转子逆时针转动的时序。上面两个表格显示的是当霍尔元件呈60°排列时的驱动波形,前面也提到霍尔元件还可以呈120°的夹角排列,那么这个时候就需要相应的驱动波形,这些波形都可以在电机生产商的资料里找到,应用时需要严格遵守通电时序。   图2.6.1 BLDC运行时序  图2.6.3 无刷电机的驱动原理图       如图 2.6.3所示,假设驱动电压和电机运行时的电压相等(包括驱动电路本身的损耗),当PWMx按照给定的时序开和关时无刷电机将会以额定的转速旋转。为了调速,我们使用远高于电机运转频率的PWM波驱动电机,通常我们需要至少10倍于电机最高频率的PWM驱动波形。当PWM驱动波形的占空比变化时,使得其在定子上的有效电压变化,这就实现了无刷电机的调速,另外,当驱动电源电压高于电机本身的额定电压时,我们可以调节PWM的占空比来使得驱动电源电压适合电机的额定驱动电压。可想而知,我们可以使用同一个控制器去挂接不同额定电压的电机,此时只需要用控制器改变一下PWM的占空比就行了。 另外还有一种控制方式:当微控制器的PWM输出不够用时,可以在整个通电时序内将上臂一直导通(即上臂不使用PWM)而下臂使用PWM驱动。        图 2.6.3中连接数字和模拟转换通道的分压电路提供了一定速度的参考电压,有了这个电压,我们就可以计算PWM波形的有效值。   3.1 闭环控制        我们可以通过闭环测量当前电机的转速而达到控制电机的转速的目的,我们通过计算期望转速和实际转速的误差,然后使用PID算法去调节PWM的占空比以达到控制电机转速的目的。        对于低成本,低转速的应用场合,可以使用霍尔传感器获得转速反馈。利用PIC18FXX31微控制器本身的一个定时器去测量两个霍尔元件输出信号,然后根据这个信号得出实际的转速。        在高转速应用场合,我们可以在电机上装上光电编码器,可以利用其输出相差90°的信号进行转速和转向的测量。通常,光电编码器还可以输出PPR信号,使得可以进行较精确的转子定位,编码器的编码刻度可以上百甚至上千,编码刻度越多,精度越高。  4. 反电动势(BACK EMF)        根据楞次定律,当BLDC转动时其绕组会产生与绕组两端电压相反方向的反向电压,这就是反电动势(BACK EMF)。记住,反电动势和绕组所加电压是反向的。决定反电动势的主要因素有以下几点:        · 转子的角速度;        · 转子永磁体的磁场强度;        · 每个定子绕组缠绕的线圈数量。        计算反电动势的公式: Back EMF = (E) ∝ NlBw 其中:        · N为每相绕组的线圈数量        · L转子的长度        · B为转子的磁通密度        · W为转子的角速度        当电机一旦做好,那么其绕组的线圈数量和永磁体的磁通密度就定了,由公式可知,唯一决定反电动势的量就是转子的角速度(也可以换算为线速度)且角速度和反电动势成正比。厂家一般会提供电机的反电动势常量,通过它我们可以用来估计某一转速下反电动势的大小。        绕组上的电压等于供电电压减去反电动势,厂家在设计电机的时候会选取适当的反电动势常量以便电机工作时有足够的电压差可以使电机达到额定转速并具有足够的转矩。当电机超过额定转速工作时,反电动势会持续上升,这时加在电机绕组间的有效电压会下降,电流会减少,扭矩会下降,当反电动势和供电电压相等的时候,电流降为0,扭矩为0,电机达到极限转速   5. 无传感器BLDC控制       目前为止,我们所讨论的都是基于霍尔元件获取电机转子位置的换向器控制方式,其实可以直接通过测量电机反电动势而知道转子的位置,在 图 2.6.1中已经可以比较清晰的看出反电动势和霍尔元件输出信号之间的关系。        通过前些章节的讨论,我们可以看出在任何时候,电机的绕组都是有一相为正向通电、一相为反向通电和另外一相为不通电。当某相反电动势反向的时候霍尔传感器的输出也跟着变化。理想状态下,霍尔元件的输出会在相反电动势过零的时候发生改变,实际应用时会有一段小的延迟,这种延迟可以通过微控制器补偿。        图 3.1.1为利用反电动势过零检测的方式来控制BLDC。   图3.1.1 过零检测电机控制       还有一方面需要考虑:当电机转速比较低的时候,反电动势会比较小,以致过零检测电路无法正常检测,这个时候在电机启动阶段就需要使用开环控制,当电机启动到产生可以过零检测的反电动势转速时,系统就需要切换到过零检测控制模式,进行闭环控制。最低的过零检测转速可以根据电机的反电动势常量计算出来。根据这个原理,可以去除霍尔元件以及因其安装的辅助磁体,这样就可以简化制造节约成本。另外,除去了霍尔元件的电机可以安装在一些粉尘和油污比较大的地方而无须为保证霍尔的正常工作而定时进行清理,与此同时,这种免维护电机还可以安装在人很难触及的地方。  6. 选择合适的BLDC        为实际应用选择合适的电机是至关重要的。根据电机的负载特性,需要确定合适的电机参数。其主要参数有以下几点:        ·应用是的最大扭矩要求;        ·平方根(RMS)扭矩需求;        ·转速要求。   6.1 最大扭矩        最大的扭矩可以通过将负载扭矩、转动惯量和摩擦力相加得到。另外,还有一些额外的因素影响最大需求扭矩如:气隙空气的阻力等,这就需要至少20%的扭矩余量,综上所述,有以下等式:        TP = (TL + TJ + TF) * 1.2        TJ为电机启动或加速过程需要克服的转动力矩,其主要包括电机转子的转动力矩和负载的转动力矩,其表示为:        TJ = JL + M * α        上式中α为加速度,JL+M为定子和负载的转动力矩。 电机的机械轴决定电机的负载力矩和摩擦力。   6.2 平方根扭矩        可以近似的认为平方根扭矩为实际应用中需要的持续输出扭矩。它由很多因素决定:最大扭矩、负载扭矩、转动惯量、加速、减速以及运行时间。下面的等式表示了平方根扭矩的计算,其中TA为加速时间、TD为减速时间和TR为运行时间。        TRMS = √ [{TP2 TA + (TL + TF)2TR + (TJ – TL – TF)2 TD}/(TA + TR + TD)]    6.3 转速        这是有应用需求的转速。比如,吹风机的转速需求是,最高转速和平均转速相差不大,显然在一些点对点定位系统如传送带和机械臂系统中就需要大转速范围的电机,可以根据电机的转速梯形曲线()确定电机的转速需求。通常,由于其他因素,在计算电机转速需求的时候需要留有10%余量。   图6.3.1 转速梯形曲线       7. BLDC典型应用       BLDC的应用十分广泛,如汽车、工具、工业工控、自动化以及航空航天等等。总的来说,BLDC可以分为以下三种主要用途:        ·持续负载应用        ·可变负载应用        ·定位应用  7.1 持续负载应用        这种应用主要用于那些需要一定转速但是对转速精度要求不高的领域,比如风扇、抽水机、吹风气等一类的应用。通常这类应用成本比较低且多是开环控制。       7.2 可变负载应用        这类主要指的是电机转速需要在某个范围内变化的应用,在这类应用中主要对电机的高转速特性和动态响应特性有更高的要求。家用器具中的洗衣机、甩干机和压缩机就是很好的例子。在汽车工业领域,油泵控制、电控制器、发动机控制和电子工具等也是很好的例子。在航空领域也有很多的应用,比如离心机、泵、机械臂、陀螺仪等等。这个领域中多使用电机反馈器件组成半开环和闭环进行控制。这就需要复杂的控制算法,增加了控制器的复杂程度也增加了系统成本。   7.3 定位应用        大多数的工业控制和自动控制方面的应用属于这个类别。在这些应用中往往会完成能量的输送,如齿轮或者传送带,因此系统对电机的转速的动态响应和转矩有特别的要求,同时这些应用也可能需要随时的改变电机的转向,电机可能工作在匀速,加速,减少阶段,而且有可能在这些阶段中负载也在变化,所以这对控制器提出了更高的要求,通常这种控制使用闭环控制,甚至会有扭矩环、速度环和位置环三个控制环。测速时可能会用上光电编码器和一些同步设备。有时候这些传感器会被用于测量相对位置,也有时候用于测量绝对位置。过程控制、机械控制和运输控制很多都属于这类应用。  8. 总结        总的来说,无刷电机相对传统的有刷电机、感应电机而言,它拥有高的转速/扭矩比、好动态特性、高效率、长寿命、低噪声、宽转速范围和制造容易等等优良特性。特别是去单位体积的功率输出特性使得其可以用于对尺寸和重量敏感的场合。这些优良的特性使得BLDC在工业控制领域、汽车工业、航空航天等等领域有着非常广泛的应用!

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 14:34:34 | 显示全部楼层
直流无刷电机原理详解
2014年08月07日
      摘要:本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。 顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点。
      1.简介
      本文要介绍电机种类中发展快速且应用广泛的无刷直流电机(以下简称BLDC)。BLDC被广泛的用于日常生活用具、汽车工业、航空、消费电子、医学电子、工业自动化等装置和仪表。 顾名思义,BLDC不使用机械结构的换向电刷而直接使用电子换向器,在使用中BLDC相比有刷电机有许多的优点,比如:
      ·能获得更好的扭矩转速特性;
      ·高速动态响应;
      ·高效率;
      ·长寿命;
      ·低噪声;
      ·高转速。
      另外,BLDC更优的扭矩和外形尺寸比使得它更适合用于对电机自身重量和大小比较敏感的场合。 在这篇应用笔记中将会对BLDC的结构、基本原理、特性和应用做一系列的探讨。探讨过程中可能用到的术语可以在附录B“术语表”中找到相应的解释。
  2. BLDC结构和基本工作原理
      BLDC属于同步电机的一种,这就意味着它的定子产生的磁场和转子产生的磁场是同频率的,所以BLDC并不会产生普通感应电机的频差现象。BLDC中又有单相、2相和
      3相电机的区别,相类型的不同决定其定子线圈绕组的多少。在这里我们将集中讨论的是应用最为广泛的3相BLDC。
    2.1 定子
      BLDC定子是由许多硅钢片经过叠压和轴向冲压而成,每个冲槽内都有一定的线圈组成了绕组,可以参见下图。从传统意义上讲,BLDC的定子和感应电机的定子有点类似,不过在定子绕组的分布上有一定的差别。大多数的BLDC定子有3个呈星行排列的绕组,每个绕组又由许多内部结合的钢片按照一定的方式组成,偶数个绕组分布在定子的周围组成了偶数个磁极。


图2.1.1. BLDC内部结构
      BLDC的定子绕组可以分为梯形和正弦两种绕组,它们的根本区别在于由于绕组的不同连接方式使它们产生的反电动势(反电动势的相关介绍请参加EMF一节)不同,分别呈现梯形和正弦波形,故用此命名了。梯形和正弦绕组产生的反电动势的波形图如下图。


      另外还需要对反电动势的一点说明就是绕组的不同其相电流也是呈现梯形和正弦波形,可想而知正弦绕组由于波形平滑所以运行起来相对梯形绕组来说就更平稳一些。但是,正弦型绕组由于有更多绕组使得其在铜线的使用上就相对梯形绕组要多。
      平时由于应用电压的不同,我们可以根据需要选择不同电压范围的无刷电机。48V及其以下应用电压的电机可以用在汽车、机器人、小型机械臂等方面。100V及其以上电压范围的电机可以用在专用器具、自动控制以及工业生产领域。
  2.2 转子
      定子是2至8对永磁体按照N极和S极交替排列在转子周围构成的(内转子型),如果是外转子型BLDC那么就是贴在转子内壁咯。如图2.2.1所示;


图2.2.1 转子磁极排布
      2.3 霍尔传感器
      与有刷直流电机不同,无刷直流电机使用电子方式换向。要使BLDC转起来,必须要按照一定的顺序给定子通电,那么我们就需要知道转子的位置以便按照通电次序给相应的定子线圈通电。定子的位置是由嵌入到定子的霍尔传感器感知的。通常会安排3个霍尔传感器在转子的旋转路径周围。无论何时,只要转子的磁极掠过霍尔元件时,根据转子当前磁极的极性霍尔元件会输出对应的高或低电平,这样只要根据3个霍尔元件产生的电平的时序就可以判断当前转子的位置,并相应的对定子绕组进行通电。
      霍尔效应:当通电导体处于磁场中,由于磁场的作用力使得导体内的电荷会向导体的一侧聚集,当薄平板通电导体处于磁场中时这种效应更为明显,这样一侧聚集了电荷的导体会抵消磁场的这种影响,由于电荷在导体一侧的聚集,从而使得导体两侧产生电压,这种现象就称为霍尔效应,E.H霍尔在1879年发现了这一现象,故以此命名。


图2.3.1 霍尔传感器测量原理
      图 2.3.1显示了NS磁极交替排列的转子的横截面。霍尔元件安放在电机的固定位置,将霍尔元件安放到电机的定子是比较复杂的,因为如果安放时位置没有和转子的磁场相切那么就可能导致霍尔元件的测量值不能准确的反应转子当前的位置,鉴于以上原因,为了简化霍尔元件的安装,通常在电机的转子上安装一颗冗余的磁体,这个磁体专门用来感应霍尔元件,这样就能起到和转子磁体感应的相同效果,霍尔元件一般按照圆周安放在印刷电路板上并配备了调节盖,这样用户就可以根据磁场的方向非常方便的调节霍尔元件的位置以便使它工作在最佳状态。
      霍尔元件位置的安排上,有60°夹角和120°夹角两种。基于这种摆放形式,BLDC的电流换向顺序由制造厂商制定,当我们控制电机的时候就需要用到这种换向顺序。
      注意:霍尔元件的电压范围从4V到24V不等,电流范围从5mA到15mA不等,所以在考虑控制器时要考虑到霍尔元件的电流和电压要求。另外,霍尔元件输出集电极开路,使用时需要接上拉电阻。
2.4 操作原理
      每一次换向都会有一组绕组处于正向通电;第二组反相通电;第三组不通电。转子永磁体的磁场和定子钢片产生的磁场相互作用就产生了转矩,理论上,当这两个磁场夹角为90°时会产生最大的转矩,当这两个磁场重合时转矩变为0,为了使转子不停的转动,那么就需要按顺序改变定子的磁场,就像转子的磁场一直在追赶定子的磁场一样。典型的“六步电流换向”顺序图展示了定子内绕组的通电次序。
2.5 转矩/转速特性
      图 2.5.1  转矩和速度特性显示了转矩和转速特性。BLDC一共有两种转矩度量:最大转矩和额定转矩。当电机连续运转的时候表现出来的就是额定转矩。在无刷电机达到额定转速之前,转矩不变,无刷电机最高转速可以达到额定转速的150%,但是超速时电机的转矩会相应下降。
      在实际的应用中,我们常常会让带负载的电机启动、停转和逆向运行,此时就需要比额定转矩更大的转矩。特别是当转子静止和反方向加速时启动电机,这个时候就需要更大的转矩来抵消负载和转子自身的惯性,这个时候就需要提供最大的转矩一直到电机进入正向转矩曲线阶段。


图2.5.1 转矩和速度特性
      3. 换向时序
      图2.6.1显示了霍尔元件的输出、反电动势和相电流的关系。图2.6.2显示了根据霍尔元件输出的波形应该绕组通电的时序。
      图2.6.1中的通电序号对应的就是图2.6.2中的序号,每隔60°夹角其中一个霍尔元件就会改变一次其输出特性,那么一圈(通电周期)下来就会有6次变化,同时相电流也会每60°改变一次。但是,每完成一个通电周期并不会使转子转动一周,转子转动一周需要的通电周期数目和转子上的磁极的对数相关,转子有多少对磁极那么就需要多少个通电周期。
      图2.6.3是关于使用MCU控制无刷电机的原理图,其中微控制器PIC18FXX31控制Q0-Q5组成的驱动电路按照一定的时序为BLDC通电,根据电机电压和电流的不同可以选择不同的驱动电路,如MOSFET、IGBT或者直接使用双极性三极管。
      表2.6.1和表2.6.2表示的是基于霍尔输入时在A、B、C绕组上的通电时序。表2.6.1是转子顺时针转动的时序,表2.6.2是转子逆时针转动的时序。上面两个表格显示的是当霍尔元件呈60°排列时的驱动波形,前面也提到霍尔元件还可以呈120°的夹角排列,那么这个时候就需要相应的驱动波形,这些波形都可以在电机生产商的资料里找到,应用时需要严格遵守通电时序。


图2.6.1 BLDC运行时序

图2.6.3 无刷电机的驱动原理图
      如图 2.6.3所示,假设驱动电压和电机运行时的电压相等(包括驱动电路本身的损耗),当PWMx按照给定的时序开和关时无刷电机将会以额定的转速旋转。为了调速,我们使用远高于电机运转频率的PWM波驱动电机,通常我们需要至少10倍于电机最高频率的PWM驱动波形。当PWM驱动波形的占空比变化时,使得其在定子上的有效电压变化,这就实现了无刷电机的调速,另外,当驱动电源电压高于电机本身的额定电压时,我们可以调节PWM的占空比来使得驱动电源电压适合电机的额定驱动电压。可想而知,我们可以使用同一个控制器去挂接不同额定电压的电机,此时只需要用控制器改变一下PWM的占空比就行了。 另外还有一种控制方式:当微控制器的PWM输出不够用时,可以在整个通电时序内将上臂一直导通(即上臂不使用PWM)而下臂使用PWM驱动。
      图 2.6.3中连接数字和模拟转换通道的分压电路提供了一定速度的参考电压,有了这个电压,我们就可以计算PWM波形的有效值。
  3.1 闭环控制
      我们可以通过闭环测量当前电机的转速而达到控制电机的转速的目的,我们通过计算期望转速和实际转速的误差,然后使用PID算法去调节PWM的占空比以达到控制电机转速的目的。
      对于低成本,低转速的应用场合,可以使用霍尔传感器获得转速反馈。利用PIC18FXX31微控制器本身的一个定时器去测量两个霍尔元件输出信号,然后根据这个信号得出实际的转速。
      在高转速应用场合,我们可以在电机上装上光电编码器,可以利用其输出相差90°的信号进行转速和转向的测量。通常,光电编码器还可以输出PPR信号,使得可以进行较精确的转子定位,编码器的编码刻度可以上百甚至上千,编码刻度越多,精度越高。
4. 反电动势(BACK EMF)
      根据楞次定律,当BLDC转动时其绕组会产生与绕组两端电压相反方向的反向电压,这就是反电动势(BACK EMF)。记住,反电动势和绕组所加电压是反向的。决定反电动势的主要因素有以下几点:
      · 转子的角速度;
      · 转子永磁体的磁场强度;
      · 每个定子绕组缠绕的线圈数量。
      计算反电动势的公式: Back EMF = (E) ∝ NlBw 其中:
      · N为每相绕组的线圈数量
      · L转子的长度
      · B为转子的磁通密度
      · W为转子的角速度
      当电机一旦做好,那么其绕组的线圈数量和永磁体的磁通密度就定了,由公式可知,唯一决定反电动势的量就是转子的角速度(也可以换算为线速度)且角速度和反电动势成正比。厂家一般会提供电机的反电动势常量,通过它我们可以用来估计某一转速下反电动势的大小。
      绕组上的电压等于供电电压减去反电动势,厂家在设计电机的时候会选取适当的反电动势常量以便电机工作时有足够的电压差可以使电机达到额定转速并具有足够的转矩。当电机超过额定转速工作时,反电动势会持续上升,这时加在电机绕组间的有效电压会下降,电流会减少,扭矩会下降,当反电动势和供电电压相等的时候,电流降为0,扭矩为0,电机达到极限转速
  5. 无传感器BLDC控制
      目前为止,我们所讨论的都是基于霍尔元件获取电机转子位置的换向器控制方式,其实可以直接通过测量电机反电动势而知道转子的位置,在 图 2.6.1中已经可以比较清晰的看出反电动势和霍尔元件输出信号之间的关系。
      通过前些章节的讨论,我们可以看出在任何时候,电机的绕组都是有一相为正向通电、一相为反向通电和另外一相为不通电。当某相反电动势反向的时候霍尔传感器的输出也跟着变化。理想状态下,霍尔元件的输出会在相反电动势过零的时候发生改变,实际应用时会有一段小的延迟,这种延迟可以通过微控制器补偿。
      图 3.1.1为利用反电动势过零检测的方式来控制BLDC。


图3.1.1 过零检测电机控制
      还有一方面需要考虑:当电机转速比较低的时候,反电动势会比较小,以致过零检测电路无法正常检测,这个时候在电机启动阶段就需要使用开环控制,当电机启动到产生可以过零检测的反电动势转速时,系统就需要切换到过零检测控制模式,进行闭环控制。最低的过零检测转速可以根据电机的反电动势常量计算出来。根据这个原理,可以去除霍尔元件以及因其安装的辅助磁体,这样就可以简化制造节约成本。另外,除去了霍尔元件的电机可以安装在一些粉尘和油污比较大的地方而无须为保证霍尔的正常工作而定时进行清理,与此同时,这种免维护电机还可以安装在人很难触及的地方。
6. 选择合适的BLDC
      为实际应用选择合适的电机是至关重要的。根据电机的负载特性,需要确定合适的电机参数。其主要参数有以下几点:
      ·应用是的最大扭矩要求;
      ·平方根(RMS)扭矩需求;
      ·转速要求。
6.1 最大扭矩
      最大的扭矩可以通过将负载扭矩、转动惯量和摩擦力相加得到。另外,还有一些额外的因素影响最大需求扭矩如:气隙空气的阻力等,这就需要至少20%的扭矩余量,综上所述,有以下等式:
      TP = (TL + TJ + TF) * 1.2
      TJ为电机启动或加速过程需要克服的转动力矩,其主要包括电机转子的转动力矩和负载的转动力矩,其表示为:
      TJ = JL + M * α
      上式中α为加速度,JL+M为定子和负载的转动力矩。 电机的机械轴决定电机的负载力矩和摩擦力。
6.2 平方根扭矩
      可以近似的认为平方根扭矩为实际应用中需要的持续输出扭矩。它由很多因素决定:最大扭矩、负载扭矩、转动惯量、加速、减速以及运行时间。下面的等式表示了平方根扭矩的计算,其中TA为加速时间、TD为减速时间和TR为运行时间。
      TRMS = √ [{TP2 TA + (TL + TF)2TR + (TJ – TL – TF)2 TD}/(TA + TR + TD)]
  6.3 转速
      这是有应用需求的转速。比如,吹风机的转速需求是,最高转速和平均转速相差不大,显然在一些点对点定位系统如传送带和机械臂系统中就需要大转速范围的电机,可以根据电机的转速梯形曲线()确定电机的转速需求。通常,由于其他因素,在计算电机转速需求的时候需要留有10%余量。


图6.3.1 转速梯形曲线
      7. BLDC典型应用
      BLDC的应用十分广泛,如汽车、工具、工业工控、自动化以及航空航天等等。总的来说,BLDC可以分为以下三种主要用途:
      ·持续负载应用
      ·可变负载应用
      ·定位应用
7.1 持续负载应用
      这种应用主要用于那些需要一定转速但是对转速精度要求不高的领域,比如风扇、抽水机、吹风气等一类的应用。通常这类应用成本比较低且多是开环控制。
     7.2 可变负载应用
      这类主要指的是电机转速需要在某个范围内变化的应用,在这类应用中主要对电机的高转速特性和动态响应特性有更高的要求。家用器具中的洗衣机、甩干机和压缩机就是很好的例子。在汽车工业领域,油泵控制、电控制器、发动机控制和电子工具等也是很好的例子。在航空领域也有很多的应用,比如离心机、泵、机械臂、陀螺仪等等。这个领域中多使用电机反馈器件组成半开环和闭环进行控制。这就需要复杂的控制算法,增加了控制器的复杂程度也增加了系统成本。
7.3 定位应用
      大多数的工业控制和自动控制方面的应用属于这个类别。在这些应用中往往会完成能量的输送,如齿轮或者传送带,因此系统对电机的转速的动态响应和转矩有特别的要求,同时这些应用也可能需要随时的改变电机的转向,电机可能工作在匀速,加速,减少阶段,而且有可能在这些阶段中负载也在变化,所以这对控制器提出了更高的要求,通常这种控制使用闭环控制,甚至会有扭矩环、速度环和位置环三个控制环。测速时可能会用上光电编码器和一些同步设备。有时候这些传感器会被用于测量相对位置,也有时候用于测量绝对位置。过程控制、机械控制和运输控制很多都属于这类应用。
8. 总结
      总的来说,无刷电机相对传统的有刷电机、感应电机而言,它拥有高的转速/扭矩比、好动态特性、高效率、长寿命、低噪声、宽转速范围和制造容易等等优良特性。特别是去单位体积的功率输出特性使得其可以用于对尺寸和重量敏感的场合。这些优良的特性使得BLDC在工业控制领域、汽车工业、航空航天等等领域有着非常广泛的应用!K

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 15:35:21 | 显示全部楼层
好复杂我是看不懂。

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 17:42:32 | 显示全部楼层
这个应该顶

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 19:33:28 | 显示全部楼层
多谢分享,字多了看着头晕,主要还是看不懂

使用道具 举报

24万

主题

442万

回帖

323

金币

版主

注册时间:2021-3-11

在线时间:9 小时

发表于 2016-12-13 23:24:04 | 显示全部楼层
多发点这样技术性不错

使用道具 举报

0

主题

2

回帖

4

金币

[Lv.1]-上等兵

注册时间:2022-5-3

在线时间:0 小时

发表于 2016-12-13 23:44:36 | 显示全部楼层
904973396 发表于 2016-12-13 10:49
小功率低成本的无刷直流电动机控制器研制
摘 要:针对电动助力车与压缩机电机的特点,对其驱动控制进行了 ...

谢谢分享
回复

使用道具 举报

您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

Archiver|手机版|小黑屋|电动车论坛

GMT+8, 2024-9-29 14:34 , Processed in 0.056807 second(s), 22 queries .

Powered by Discuz! X3.5

© 2001-2024 Discuz! Team.

快速回复 返回顶部 返回列表